1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
12

As the ambulance got closer, Marge noticed that the pitch of the siren got higher. This happened because

Physics
2 answers:
disa [49]3 years ago
7 0

Answer:

The correct choice is

A) the sound waves were pushed closer together.

Explanation:

As the ambulance gets closer, the distance between the ambulance and marge decreases and so does the wavelength of the siren observed by marge. As the wavelength decrease and speed remains the same for the siren, the frequency of the siren increases because wavelength, frequency and speed are related as

Frequency = Speed/wavelength

Clearly, the frequency is inversely related to wavelength.

AfilCa [17]3 years ago
6 0

A) the sound waves were pushed closer together

You might be interested in
Share your thoughts about this statement by John Wesley<br> "Electricty is the soul of universe"
ikadub [295]

Answer:

<em>I think this statement is true at least in modern day times. The world runs on nothing but technology. People use more technology instead of old school textbooks and papers. Imagine living in a world without technology… that means no cars, no trains, no devices, no machines like your stove or printer, no lights and lots more. John Wesley is 100 percent correct with this statement. Electricity is indeed the powerhouse of the universe. </em>

4 0
2 years ago
Read 2 more answers
A 21.6−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a h
IrinaK [193]

Answer : The specific heat capacity of the alloy 1.422J/g^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

C_1 = specific heat of alloy = ?

C_2 = specific heat of water = 4.18J/g^oC

m_1 = mass of alloy = 21.6 g

m_2 = mass of water = 50.0 g

T_f = final temperature of system = 31.10^oC

T_1 = initial temperature of alloy = 93.00^oC

T_2 = initial temperature of water = 22.00^oC

Now put all the given values in the above formula, we get

21.6g\times c_1\times (31.10-93.00)^oC=-50.0g\times 4.18J/g^oC\times (31.10-22.00)^oC

c_1=1.422J/g^oC

Therefore, the specific heat capacity of the alloy 1.422J/g^oC

6 0
2 years ago
A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The
Yuki888 [10]

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

5 0
2 years ago
Lamar writes several equations trying to better understand potential energy. What conclusion is best supported by Lamar’s work?
faust18 [17]
Its B i got it right on the test
7 0
3 years ago
Read 2 more answers
A thin, rectangular sheet of metal has mass M and sides of length a and b. Find the moment of inertia of this sheet about an axi
Lubov Fominskaja [6]

Answer:

The moment of inertia is I=\frac{M}{12} a^{2}

Explanation:

The moment of inertia is equal:

I=\int\limits^a_b {r^{2} } \, dm

If r is -\frac{a}{2}

and dm=\frac{M}{a} dr

I=\int\limits^a_b {r^{2}\frac{M}{a}  } \, dr\\a=\frac{a}{2} \\b=-\frac{a}{2}

I=\frac{M}{a} \int\limits^a_b {r^{2}  } \, dr\\\\I=\frac{M}{a} (\frac{M}{3} )_{b}^{a}\\  I=\frac{M}{3a} (\frac{a^{3} }{8} +\frac{a^{3} }{8} )\\I=\frac{M}{12} a^{2}

7 0
3 years ago
Other questions:
  • How do you know the earth is rotating on its axis
    9·1 answer
  • The gas tank of a car is filled with a nozzle that discharges gasoline at a constant flow rate. Based on unit considerations of
    12·1 answer
  • Known as the twilight zone, the mesopelagic zone meets the photic zone above and becomes very dark as depth increases. Temperatu
    13·2 answers
  • Which term describes the amount of matter packed into a given space?
    13·2 answers
  • A 1200-kg ore cart is rolling at 10.8 m/s across a flat friction-free surface. a crane suddenly drops of ore vertically into the
    11·1 answer
  • What is the slowest speed (in mph) that Mr. P can travel and still jump across the canyon? (I have attached a picture) Hint: The
    5·1 answer
  • 5) A moving 2 kg object has an initial velocity of 10 m/s. It comes to a stop on a rough
    14·2 answers
  • Hazel recently read an article that claimed that radio waves can cause electron displacement. Based on
    5·1 answer
  • What work is done by a forklift raising a 574 kg crate to a height of 1.3m in a time of 2.0 seconds?
    10·1 answer
  • What is the pulling force of this train, if its engine provides 4200 kW power and 90 km/h speed?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!