Answer: 1) The best estimate for the average cost of tuition at a 4-year institution starting in 2020 =$ 31524.31
2) The slope of regression line b=937.97 represents the rate of change of average annual cost of tuition at 4-year institutions (y) from 2003 to 2010(x). Here,average annual cost of tuition at 4-year institutions is dependent on school years .
Step-by-step explanation:
1) For the given situation we need to find linear regression equation Y=a+bX for the given situation.
Let x be the number of years starting with 2003 to 2010.
i.e. n=8
and y be the average annual cost of tuition at 4-year institutions from 2003 to 2010.
With reference to table we get

By using above values find a and b for Y=a+bX, where b is the slope of regression line.

and

∴ To find average cost of tuition at a 4-year institution starting in 2020.(as n becomes 18 for year 2020 if starts from 2003 ⇒X=18)
So, Y= 14640.85 + 937.97×18 = 31524.31
∴The best estimate for the average cost of tuition at a 4-year institution starting in 2020 = $31524.31
Answer:
m∠FEH = 44°
m∠EHG = 64°
Step-by-step explanation:
1) The given information are;
The angle of arc m∠FEH = 272°, the measured angle of ∠EFG = 116°
Given that m∠FEH = 272°, therefore, arc ∠HGF = 360 - 272 = 88°
Therefore, angle subtended by arc ∠HGF at the center = 88°
The angle subtended by arc ∠HGF at the circumference = m∠FEH
∴ m∠FEH = 88°/2 = 44° (Angle subtended at the center = 2×angle subtended at the circumference)
m∠FEH = 44°
2) Similarly, m∠HGF is subtended by arc m FEH, therefore, m∠HGF = (arc m FEH)/2 = 272°/2 = 136°
The sum of angles in a quadrilateral = 360°
Therefore;
m∠FEH + m∠HGF + m∠EFG + m∠EHG = 360° (The sum of angles in a quadrilateral EFGH)
m∠EHG = 360° - (m∠FEH + m∠HGF + m∠EFG) = 360 - (44 + 136 + 116) = 64°
m∠EHG = 64°.
Left side = 170-58 =121'
Bottom side = 96-4 =92'
Now let's calculate the upper oblique (slantwise) side by Pythagoras
oblique² = 92²+28² = 9248 & oblique =√9248 = 96.167'
The perimeter of the backyards = 96.167+93+92+121 = 402.167 ft
Answer:
17
Step-by-step explanation:
QS and RS equal the same
5x - 8 = 3x + 2
-3x +8 -3x +8
2x = 10
x = 5 you would then plug x into QS
5(5) - 8
25 - 8
17