Answer:
C) 7
===========================================
Work Shown:
Use the slope formula
m = (y2-y1)/(x2-x1)
Plug in the given slope we want m = -5/3 and also the coordinates of the points. Then isolate r
m = (y2-y1)/(x2-x1)
-5/3 = (2-r)/(r-4)
-5(r-4) = 3(2-r) .... cross multiplying
-5r+20 = 6-3r
-5r+20+5r = 6-3r+5r .... adding 5 to both sides
20 = 6+2r
20-6 = 6+2r-6 ....subtracting 6 from both sides
14 = 2r
2r = 14
2r/2 = 14/2 .... dividing both sides by 2
r = 7
The slope of the line through (4,7) and (7,2) should be -5/3, let's check that
m = (y2-y1)/(x2-x1)
m = (2-7)/(7-4)
m = -5/3
The answer is confirmed
The graph with an equation y = 6x has a slope of 6. If the slope is changed to 0, the equation becomes y = 0.
<h3>What is a
linear function?</h3>
A linear function is in the form:
y = mx + b
Where m is the slope (rate of change) and b is the y intercept
The graph with an equation y = 6x has a slope of 6. If the slope is changed to 0, the equation becomes y = 0.
Find out more on linear function at: brainly.com/question/4025726
Point-slope form: y-y1 = m(x-x1)
Standard form: ax + by = c
Slope-intercept form: y = mx+b
Start by finding the slope. We know it is negative since the line is decreasing. The slope is -4/3.
To create point-slope form, we need to get one point from the graph. Let's use (3,0).

To create slope-intercept form, we need the slope and the y-intercept. The y-intercept is the point where our equation crosses the y-axis. For this equation, it is 4.

To get standard form, solve the equation in terms of C.
Point-slope form: y = -4/3(x-3)
Slope-intercept form: y = -4/3x + 4
Standard form: 4/3x + y = 4
Answer:
AB = 13.89
Measure of angle A = 59.74°
Measure of angle B = 30.26°
Step-by-step explanation:
The given parameters are;
∠C = 90°
AC = 7
BC = 12
Part 1
Hence, the question has the dimensions of the two adjacent sides of the right angle (angle 90°)
From Pythagoras theorem, we have;
A² = B² + C²
Where, A is the opposite side to the right angle, hence;
In the ΔABC,
AB ≡ A
Therefore;
AB² = AC² + BC² = 7² + 12² = 193
∴ AB = √193 = 13.89
Part 2
∠A is the side opposite side BC such that by trigonometric ratios

∴ ∠A = Arctan(1.714) or tan⁻¹(1.714) = 59.74°
Part 3
∠B is found from knowing that the sum of the angles in a triangle = 180°
∴ ∠A + ∠B + ∠C = 180° which gives
59.74° + 90° + ∠B = 180°
Hence, ∠B = 180° - (59.74° + 90°) = 180° - 149.74° = 30.26°.
Speed=d/t
Ans-1.93
Correct me if I’m wrong