3/4...there’s no work to show
You probably mean either
![8\cdot2^x + 3 = 48](https://tex.z-dn.net/?f=8%5Ccdot2%5Ex%20%2B%203%20%3D%2048)
or
![8\cdot2^{x+3} = 48](https://tex.z-dn.net/?f=8%5Ccdot2%5E%7Bx%2B3%7D%20%3D%2048)
Write 8 = 2³, so that in the first interpretation,
![8\cdot2^x = 2^3 \cdot 2^x = 2^{x + 3}](https://tex.z-dn.net/?f=8%5Ccdot2%5Ex%20%3D%202%5E3%20%5Ccdot%202%5Ex%20%3D%202%5E%7Bx%20%2B%203%7D)
and in the second,
![8\cdot2^{x+3} = 2^3 \cdot 2^{x+3} = 2^{x + 6}](https://tex.z-dn.net/?f=8%5Ccdot2%5E%7Bx%2B3%7D%20%3D%202%5E3%20%5Ccdot%202%5E%7Bx%2B3%7D%20%3D%202%5E%7Bx%20%2B%206%7D)
Then in the first interpretation, we have
![2^{x + 3} + 3 = 48 \implies 2^{x + 3} = 45 \implies x + 3 = \log_2(45) \implies x = \log_2(45) - 3 \approx \boxed{2.492}](https://tex.z-dn.net/?f=2%5E%7Bx%20%2B%203%7D%20%2B%203%20%3D%2048%20%5Cimplies%202%5E%7Bx%20%2B%203%7D%20%3D%2045%20%5Cimplies%20x%20%2B%203%20%3D%20%5Clog_2%2845%29%20%5Cimplies%20x%20%3D%20%5Clog_2%2845%29%20-%203%20%5Capprox%20%5Cboxed%7B2.492%7D)
Otherwise, the second interpretation gives
![2^{x + 6} = 48 \implies x + 6 = \log_2(48) \implies x = \log_2(48) - 6 \approx -0.415](https://tex.z-dn.net/?f=2%5E%7Bx%20%2B%206%7D%20%3D%2048%20%5Cimplies%20x%20%2B%206%20%3D%20%5Clog_2%2848%29%20%5Cimplies%20x%20%3D%20%5Clog_2%2848%29%20-%206%20%5Capprox%20-0.415)
Answer:
im taking the same test lol
Step-by-step explanation: