Answer: left one is no solution and right one is infinite solutions
explanation: the left one the lines don’t touch at all which has no solution and the right one means that both lines are on top of each other
Method A: 7.6666.... = 7 + 0.6666... = 7 + 2/3 = 21/3 + 2/3 = 23/3
Method B: 10(7.666...) - 1(7.666...) = 76.666... - 7.666... = 69.000...
(10 - 1)(7.666...) = 69
7.666... = 69/9 = 23/3
Answer: 2 inches, 3 inches, or 3.125 and 2.083
Explanations:
The simplest way is to take 20% of the 2.5 inches and go that much above & below 2.5 inches.
2.5 x 20% = 2.5 x 0.20 = 0.5
So 2.5 - 0.5 = 2 inches was predicted
And 2.5 + 0.5 = 3 inches was predicted.
The more complicated way is to see number + 20% of that number = 2.5, and what number - 20% = 2.5.
Which solution sounds more like what you’re doing in class right now?
If it’s the more complicated way:
0.8x = 2.5 (80% of the predicted rain value equals 2.5)
x = 3.125 inches was predicted
1.2x = 2.5 (120% of the predicted rain value equals 2.5)
x = 2.083 inches was predicted
Sorry, this is probably confusing. Let me know what questions you have.
The Associative Property say that it doesn't matter how we group the numbers (i.e. which we calculate first) when we add
(a + b) + c = a + (b + c)
The Commutative Property say we can swap numbers over and still get the same answer when we add
a + b = b + a
The Distributive Property:
a(b + c) = ab + ac
------------------------------------------
-3a + 4b + 5a + (-7b) = -3a + 5a + 4b + (-7b)
<h3>Answer: the commutative property</h3>
Answer: The required derivative is 
Step-by-step explanation:
Since we have given that
![y=\ln[x(2x+3)^2]](https://tex.z-dn.net/?f=y%3D%5Cln%5Bx%282x%2B3%29%5E2%5D)
Differentiating log function w.r.t. x, we get that
![\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [x'(2x+3)^2+(2x+3)^2'x]\\\\\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [(2x+3)^2+2x(2x+3)]\\\\\dfrac{dy}{dx}=\dfrac{4x^2+9+12x+4x^2+6x}{x(2x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{8x^2+18x+9}{x(2x+3)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5Bx%27%282x%2B3%29%5E2%2B%282x%2B3%29%5E2%27x%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5B%282x%2B3%29%5E2%2B2x%282x%2B3%29%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B4x%5E2%2B9%2B12x%2B4x%5E2%2B6x%7D%7Bx%282x%2B3%29%5E2%7D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B8x%5E2%2B18x%2B9%7D%7Bx%282x%2B3%29%5E2%7D)
Hence, the required derivative is 