to find the x-intercept of a function, we simply set y = 0 and then solve for "x", so, let's first find the equation of it and then set y = 0.
![\bf (\stackrel{x_1}{-12}~,~\stackrel{y_1}{16})~\hspace{10em} slope = m\implies-\cfrac{2}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-16=-\cfrac{2}{3}[x-(-12)] \\\\\\ y-16=-\cfrac{2}{3}(x+12)\implies \stackrel{\stackrel{y}{\downarrow }}{0}-16=-\cfrac{2}{3}x-8\implies -8=-\cfrac{2x}{3} \\\\\\ -24=-2x\implies \cfrac{-24}{-2}=x\implies 12=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (12,0) ~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-12%7D~%2C~%5Cstackrel%7By_1%7D%7B16%7D%29~%5Chspace%7B10em%7D%20slope%20%3D%20m%5Cimplies-%5Ccfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%5Bx-%28-12%29%5D%20%5C%5C%5C%5C%5C%5C%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%28x%2B12%29%5Cimplies%20%5Cstackrel%7B%5Cstackrel%7By%7D%7B%5Cdownarrow%20%7D%7D%7B0%7D-16%3D-%5Ccfrac%7B2%7D%7B3%7Dx-8%5Cimplies%20-8%3D-%5Ccfrac%7B2x%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20-24%3D-2x%5Cimplies%20%5Ccfrac%7B-24%7D%7B-2%7D%3Dx%5Cimplies%2012%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%2812%2C0%29%20~%5Chfill)
We are given the height of Joe which is 1.6 meters, the length of his shadow is 2 meters when he stands 3 meters from the base of the floodlight.
First, we have to illustrate the problem. Then we can observe two right triangles formed, one is using Joe and the length of the shadow, the other is the floodlight and the sum of the distance from the base plus the length of the shadow. To determine the height of the floodlight, use ratio and proportion:
1.6 / 2 = x / (2 +3)
where x is the height of the flood light
solve for x, x = 4. Therefore, the height of the floodlight is 4 meters.
Answer:
242.975609756
Step-by-step explanation:
0.004 is one tenth of 0.04 or 0.04 is ten times 0.004
Answer:
6303
Step-by-step explanation: