B and C are the correct answers because when you stand in an open space the ground is an conductor therefore adding and electric shock to your day
Answer:
ar = 5.86*10^-3 m/s^2
Explanation:
In order to calculate the radial acceleration of the Earth, you first take into account the linear speed of the Earth in its orbit.
You use the following formula:
(1)
G: Cavendish's constant = 6.67*10^-11 m^3 kg^-1 s^-2
Ms: Sun's mass = 1.98*10^30 kg
r: distance between Sun ad Earth = 1.50*10^8 km = 1.50*10^11 m
Furthermore, you take into account that the radial acceleration is given by:
(2)
You replace the equation (1) into the equation (2) and replace the values of all parameters:

The radial acceleration of the Earth, towards the sun is 5.86*10^-3 m/s^2
Horizontal velocity: 81.9 km/h
Vertical velocity: 57.4 km/h
Explanation:
We can solve this problem by resolving the velocity vector into its component along the horizontal and vertical direction.
The horizontal velocity of the stunt bike is given by:

where
v = 100 km/h is the magnitude of the velocity
is the angle of projection
Substituting, we find

The vertical velocity instead is given by

where


Substituting,

Learn more about vector components:
brainly.com/question/2678571
#LearnwithBrainly
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.