The vector force on the unit positive charge placed at any location in the field defines the strength of the electric field at that point. The charge used to determine field intensity (field strength) is known as the test charge. Now, a field line is defined as a line to which the previously mentioned field strength vectors are tangents at the relevant places. When we study positive charge field lines, the field strength vectors point away from the positive charge. If there is a negative charge anywhere in the vicinity, the field lines that began from the positive charge will all terminate at the negative charge if the value of the negative charge is the same as the value of the positive charge. Remember that the number of field lines originating from positive charge is proportional to the charge's value, and similarly, the number of field lines terminating at negative charge is proportionate to the charge's value. As a result, if all charges are equivalent, all lines originating from the positive charge terminate at the negative charge. If the value of the positive charge is greater than the value of the negative charge, the number of lines ending at the negative charge will be proportionally less than the number of lines beginning at the positive charge. The remaining lines that do not end at the negative charge will go to infinity. If the positive charge is less, all lines from it terminate at a negative charge, and any other reasonable number of ines terminate at a negative charge from infinity. We should also keep in mind that the number of lines that run perpendicular to the field direction across a surface of unit area is proportional to the field strength at that location. As a result, lines are dense in the strong field zone and sparse in the low intensity region.
Answer:

Explanation:
means initial angular velocity, which is 0 rev/min
means final angular velocity, which is 
t means time t= 3.20 s
one revolution is equivalent to 2πrad so the final angular velocity is:
= (2π/60) *2.513*10^{4} rad/s
= 2628.5 rad/s
so the angular acceleration, α will be:
α = 2628.5 rad/s / 3.20 s

so the rotational motion about a fixed axis is:
+ 2αΔTita where ΔTita is the angle in radians
so now find the ΔTita the subject of the formula
ΔTita = 


Jurgen Habermas is a German philosopher and sociologist
which is an expert in the field of critical conjecture and pragmatism. He is most
widely known for his theories regarding communicative rationality and the
public sphere. This concept of intersubjectivity is called as:
“Intersubjectivity
of mutual understanding”
The answer is B . You begin with a purpose for the lab, then hypothesize on what you believe will happen. Next, follow the procedures. This is always the last step, Anatoly did. Reflect upon you hypothesis, did the lab support or disprove your hypothesis. Include observations you have made. Identify errors.