1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
7

The design of interior spaces is relatively unimportant to good architecture?

Physics
1 answer:
Marta_Voda [28]3 years ago
7 0
The correct answer is good architecture is
You might be interested in
If two stars have the same absolute magnitude, what can be a reason for the difference in their brightness?
AysviL [449]

B. their distances from the sun.

Explanation:

Absolute Magnitude:

Astronomers defines the absolute magnitude of a stars brightness in terms of how bright a star appears from a standard distance of 10 parsecs. Parsec is a unit of distance in astronomy. 10 parsecs is equal to 32.6 light years.

Apparent Magnitude:

Apparent magnitude of a star refers to how bright the star appears at its distance from the Earth.

If two stars have the same absolute magnitude but their apparent magnitude differs, the reason is that the distance of both the stars from the Earth varies. Hence their brightness differs when measured from Earth. The farther a star is from the Earth, the fainter its brightness.

Keywords: star, brightness, parsec, light years, apparent magnitude, absolute magnitude

Learn more about stars and absolute magnitude from:

brainly.com/question/13002384

brainly.com/question/1384449

#learnwithBrainly

5 0
3 years ago
When you are on a roller coaster, you are constantly transforming from Potential to Kinetic energy and back. Explain how these e
andreev551 [17]

Answer:

The two types of energy possessed by the roller coaster are:

- Potential energy: it is the energy possessed by the roller coaster due to its position. It is calculated as

PE=mgh

where

m is the mass of the roller coaster

g is the acceleration due to gravity

h is the height of the roller coaster relative to the ground

- KInetic energy: it is the energy possessed by the roller coaster due to its motion. It is calculated as

KE=\frac{1}{2}mv^2

where

v is the speed of the roller coaster

Moreover, according to the law of conservation of energy, the total mechanical energy of the roller coaster (the sum of potential+kinetic energy) is constant during the motion:

E=PE+KE=const.

This implies that:

- When PE increases (because h increases), KE decreases (because v decreases)

- When PE decreases (because h decreases), KE increases (because v increases)

Now we can apply these conclusions to the motion of the roller coaster:

- When it moves from A to B, potential energy is converted into kinetic energy, so PE decreases and KE increases

- When it moves from B to C, kinetic energy is converted into potential energy, so PE increases and KE decreases

- When it moves from C to D, potential energy is converted into kinetic energy, so PE decreases and KE increases

- When it moves from D to E,  kinetic energy is converted into potential energy, so PE increases and KE decreases

8 0
3 years ago
The terminal velocity is not dependent on which one of the following properties? the drag coefficient 1 the force of gravity 2 c
ahrayia [7]
<h2>Answer: the falling time</h2>

Explanation:

When a body or object falls, basically two forces act on it:  

1. The force of air friction, also called<em> </em><u><em>"drag force"</em></u> D:  

D={C}_{d}\frac{\rho V^{2} }{2}A  (1)

Where:  

C_ {d} is the drag coefficient  

\rho is the density  of the fluid (air for example)

V is the velocity  

A is the transversal area of the object

So, this force is proportional to the transversal area of ​​the falling element and to the square of the velocity.  

2. Its <u>weight </u>due to the gravity force W:  

W=m.g

(2)

Where:  

m is the mass of the object

g is the acceleration due gravity  

So, at the moment <u>when the drag force equals the gravity force, the object will have its terminal velocity:</u>

D=W (3)

{C}_{d}\frac{\rho V^{2} }{2}A=m.g  (4)

V=\sqrt{\frac{2m.g}{\rho A{C}_{d}}}  (5) This is the terminal velocity

As we can see, there is no "falling time" in this equation.

Therefore, the terminal velocity is not dependent on the falling time.

6 0
2 years ago
When is orange is the new black episodes come out
xenn [34]
Some are out but will be on Netflix June 17
3 0
3 years ago
What is the value of the normal force if the coefficient of kinetic friction is 0.22 and the kinetic frictional force is 40 newt
Salsk061 [2.6K]
1.8x10 sqaured newtons for all plato users

5 0
3 years ago
Read 2 more answers
Other questions:
  • Redshift means stars and galaxies are emitting a color that is shifting toward the red end of the color spectrum. this indicates
    5·2 answers
  • Which changes in an electric motor will make the motor stronger? Check all that apply.
    8·2 answers
  • Laminar flow, where water moves in approximately straight-line paths, characterizes ________.
    14·1 answer
  • A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
    15·1 answer
  • An electron remains suspended between the surface of the Earth (assumed neutral) and a fixed positive point charge, at a distanc
    12·1 answer
  • An electron is accelerated by a constant electric field of magnitude 410 N/C. Find the acceleration of the electron. The electro
    8·1 answer
  • Your're sailing a boat from spain west to florida. which winds would you use?
    8·1 answer
  • Scientists can work in which of the following. Select all that apply.
    11·1 answer
  • I WILL MARK BRAINLST
    7·1 answer
  • The radius of a lead atom is 175 pm. how many lead atoms would have to be laid side by side to span a distance of 6.11 mm?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!