<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>
Answer:
The magnitude is "3.8 m/s²", in the upward direction.
Explanation:
The given values are:
Mass,
m = 88 kg
Scale reads,
T = 900 N
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Now,
⇒ 
On substituting the given values in the above equation, we get
⇒ 
On subtracting "862.4" from both sides, we get
⇒ 
⇒ 
⇒ 
⇒
(upward direction)
Answer:
The act of distributing land to an individual as salary, donation, present or reward is called birta. There was the Birta system during the Malla, Shah and Rana rule in the country.
Explanation:
Act: (a) "Birta land" means any kind of land obtained or possessed in such a way that the land is wholly exempt from the State Land Tax, or that the tax payable thereon is less than the tax imposed on Raikar land of similar type in the same place, and this term also includes any land as defined in Clauses
Answer:
Energy, 9 kWh or 32400 kJ
Explanation:
Given that,
The power of heater, P = 3 kW
It runs for 3 hours to raise the water temperature to the desired level. We need to find the amount of electric energy used. We know that the electrical power of an object is given by total energy delivered per unit time. It is given by :



E = 9 kWh
Since, 1 kWh = 3600 kJ
E = 32400 kJ
So, the amount of electric energy used is 9 kWh or 32400 kJ. Hence, this is the required solution.
Answer:
the answer is C
Explanation:
C) friction - mechanical - electrical