<u>Given</u>:
The 11th term in a geometric sequence is 48.
The 12th term in the sequence is 192.
The common ratio is 4.
We need to determine the 10th term of the sequence.
<u>General term:</u>
The general term of the geometric sequence is given by

where a is the first term and r is the common ratio.
The 11th term is given is

------- (1)
The 12th term is given by
------- (2)
<u>Value of a:</u>
The value of a can be determined by solving any one of the two equations.
Hence, let us solve the equation (1) to determine the value of a.
Thus, we have;

Dividing both sides by 1048576, we get;

Thus, the value of a is 
<u>Value of the 10th term:</u>
The 10th term of the sequence can be determined by substituting the values a and the common ratio r in the general term
, we get;





Thus, the 10th term of the sequence is 12.
Okay so if he serves 18 customers in 42 minutes divide 18 by 42 and you get the amount of customers he serves per min which is 0.42857413 then multiply that by 120 since 2 hours add up to 120 minutes and you get 51.43
Answer:
24
Step-by-step explanation: