Hello. This question is incomplete. The full question is:
A conducting sphere contains positive charge distributed uniformly over its surface. Which statements about the potential due to this sphere are true? All potentials are measured relative to infinity. (There may be more than one correct choice.)
A) The potential is lowest, but not zero, at the center of the sphere. B) The potential at the center of the sphere is zero. C) The potential at the center of the sphere is the same as the potential at the surface. D) The potential at the surface is higher than the potential at the center. E) The potential at the center is the same as the potential at infinity
Answer:
C) The potential at the center of the sphere is the same as the potential at the surface.
Explanation:
When a conductive sphere has charges that distribute evenly on its surface, it means that its interior has a zero charge cap. As a result, the outside of this sphere has a charge distribution that will be the same if the center of the sphere were charged. In this way, the center and the surface of the sphere become identical in relation to the point charge potential. In other words, this means that the null interior of the sphere has a constant potential that makes the distribution of charges within the sphere exactly equal to the distribution of charges outside the sphere.
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Pulling a dogs leash: inertia
Answer:
R = 545.38 m ; θ = 28.43°
Explanation:
given,
for town A : d₁ = 335 km at an direction of 20° north of east
for town B : d₂ = 245 km at 30.0° west of north from town A
x = 335 cos 20° + 245 sin 30°
x = 437.29 m
y = 335 sin 20° + 245 cos 30°
y = 326.75 m


R = 545.38 m

θ = 28.43°