Answer:
0.16joules
Explanation:
Using the relation for The gravitational potential energy
E= Mgh
Where,
E= Potential energy
h = Vertical Height
M = mass
g = Gravitational Field Strength
To find the vertical component of angle of launch Where the angle is 22°
h= sin theta
So E = mghsintheta
= 0.18 x 0.98 x 0.253 sin22
=0.16joules
Explanation:
Answer:According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R.
Explanation:The Period T. The time T required for one complete revolution is called the period. For. constant speed. v = 2π r T holds.
Answer:
2.59 T
Explanation:
Parameters given:
Current flowing through the wire, I = 29 A
Angle between the magnetic field and wire, θ = 90°
Magnetic force, F = 2.25 N
Length of wire, L = 3 cm = 0.03 m
The magnetic force, F, is related to the magnetic field, B, by the equation below:
F = I * L * B * sinθ
Inputting the given parameters:
2.25 = 29 * 0.03 * B * sin90
2.25 = 0.87 * B
=> B = 2.25/0.87
B = 2.59 T
The magnetic field strength between the poles is 2.59 T
The time needed for the hammer to reach the surface of the Earth is 3.54 s.
<h3>
Time of motion of the hammer</h3>
The time of motion is calculated as follows;
t = √(2h/g)
where;
- h is height of fall
- g is acceleration due to gravity
t = √(2 x 10 / 1.6)
t = 3.54 s
Thus, the time needed for the hammer to reach the surface of the Earth is 3.54 s.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
There's no air in space, so there's no air resistance there.