The weight of an object is the product of its mass and the acceleration of gravity.
If g[e] is the acceleration of gravity on earth, and g[M] the same for Mars and g[m] the same for the moon,
then m[M]=m[e]g[M]/g[e] and m[m]=m[e]g[m]/g[e] where m[ ] denotes mass. Note that weight=mg (measured in newtons) while mass is in kilograms.
If g[M]=g[e]/3 and g[m]=g[e]/6 approximately. Then the weight of an object on Mars will be about a third of what it is on earth, while on the moon it would be about a sixth of what it is on earth.
Answer:
Step-by-step explanation:
32n($1.75/n)=$56
Answer D
Answer:
B: 60
Step-by-step explanation:
f(x)= 5x+10, if x=10
f(10)=5(10)+10
5(10)+10=60
f(10)=60
The best thing to do here is to divide $4.85 by 10, and then multiply it by 2.5. $4.85/10= $0.48. $0.48x2.5= $1.20
Therefore,the discount is $1.20, you've then got to subtract this from $4.85. $4.85-$1.20= $3.65
$3.65 is the sale price of the pizza.
Hope this helps :)
Answer:
The expression to compute the amount in the investment account after 14 years is: <em>FV</em> = [5000 ×(1.10)¹⁴] + [3000 ×(1.10)⁸].
Step-by-step explanation:
The formula to compute the future value is:
![FV=PV[1+\frac{r}{100}]^{n}](https://tex.z-dn.net/?f=FV%3DPV%5B1%2B%5Cfrac%7Br%7D%7B100%7D%5D%5E%7Bn%7D)
PV = Present value
r = interest rate
n = number of periods.
It is provided that $5,000 were deposited now and $3,000 deposited after 6 years at 10% compound interest. The amount of time the money is invested for is 14 years.
The expression to compute the amount in the investment account after 14 years is,
![FV=5000[1+\frac{10}{100}]^{14}+3000[1+\frac{10}{100}]^{14-6}\\FV=5000[1+0.10]^{14}+3000[1+0.10]^{8}](https://tex.z-dn.net/?f=FV%3D5000%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%5E%7B14%7D%2B3000%5B1%2B%5Cfrac%7B10%7D%7B100%7D%5D%5E%7B14-6%7D%5C%5CFV%3D5000%5B1%2B0.10%5D%5E%7B14%7D%2B3000%5B1%2B0.10%5D%5E%7B8%7D)
The future value is:
![FV=5000[1+0.10]^{14}+3000[1+0.10]^{8}\\=18987.50+6430.77\\=25418.27](https://tex.z-dn.net/?f=FV%3D5000%5B1%2B0.10%5D%5E%7B14%7D%2B3000%5B1%2B0.10%5D%5E%7B8%7D%5C%5C%3D18987.50%2B6430.77%5C%5C%3D25418.27)
Thus, the expression to compute the amount in the investment account after 14 years is: <em>FV</em> = [5000 ×(1.10)¹⁴] + [3000 ×(1.10)⁸].