Hi
Acetylene and propane
I hope this help you!
Answer:
5.6 mm
Explanation:
Given that:
A cylindrical tank is required to contain a:
Gage Pressure P = 560 kPa
Allowable normal stress
= 150 MPa = 150000 Kpa.
The inner diameter of the tank = 3 m
In a closed cylinder there exist both the circumferential stress and the longitudinal stress.
Circumferential stress 
Making thickness t the subject; we have


t = 0.0056 m
t = 5.6 mm
For longitudinal stress.



t = 0.0028 mm
t = 2.8 mm
From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value with the maximum thickness = 5.6 mm
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
The attached file gave a detailed solution of the problem.
Answer:
Recall the formula for the maximum stress, σₐ = 2σ₀ *√ (α/ρₓ)
where
σ₀ = tensile stress = 140 MPa = 1.40x 10⁸Pa
α = crack length = 3.8 × 10–2 mm = 3.8 x 10⁻⁵m
ρₓ = radius of curvature = 1.9 × 10⁻⁴mm = 1.9 × 10⁻⁷m
Substituting these values into the formula, we can calculate the max stress as
====== 2 x 1.40x 10⁸ x √(3.8 x 10⁻⁵/1.9 × 10⁻⁷)
σₐ = 24.4MPa
Answer:
No
Explanation:
Heat engines are used for converting the heat into mechanical energy which is used for doing mechanical work.
The efficiency of heat engine is the fraction of mechanical energy to the thermal energy. The efficiency can not be 100% as some of the energy always loss due to friction and motion of the body parts of the heat engine.