The pilot valve and spark igniter are energized, the pilot flame is proved, and then the main gas valve is energized.
Answer:
Absolute Pressure=315.06256 kPa
Explanation:
Gauge pressure= 31 psi
Atmospheric Pressure at Sea level= 1 atm=101.325 kPa

Answer:


Explanation:
For this case we have given the following data:
represent the temperature for the air
represent the velocity of the air
represent the specific heat ratio at the room
represent the gas constant for the air
And we want to find the velocity of the air under these conditions.
We can calculate the spped of the sound with the Newton-Laplace Equation given by this equation:

Where K = is the Bulk Modulus of air, k is the adiabatic index of air= 1.4, R = the gas constant for the air,
the density of the air and T the temperature in K
So on this case we can replace and we got:

The Mach number by definition is "a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound" and is defined as:

Where v is the flow velocity and
the volocity of the sound in the medium and if we replace we got:

And since the Ma<0.8 we can classify the regime as subsonic.
Answer:
Head loss = 28.03 m
Explanation:
According to Bernoulli's theorem for fluids we have

Applying this between the 2 given points we have

Here
is the head loss that occurs
Since the pipe is horizantal we have 
Applying contunity equation between the 2 sections we get

Since the cross sectional area of the both the sections is same thus the speed
is also same
Using this information in the above equation of head loss we obtain

Applying values we get
