![\bf f(x)=(x-6)e^{-3x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=1\cdot e^{-3x}+(x-6)-3e^{-3x}\implies \cfrac{dy}{dx}=e^{-3x}[1-3(x-6)] \\\\\\ \cfrac{dy}{dx}=e^{-3x}(19-3x)\implies \cfrac{dy}{dx}=\cfrac{19-3x}{e^{3x}}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%28x-6%29e%5E%7B-3x%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot%20e%5E%7B-3x%7D%2B%28x-6%29-3e%5E%7B-3x%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%5B1-3%28x-6%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%2819-3x%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B19-3x%7D%7Be%5E%7B3x%7D%7D)
set the derivative to 0, solve for "x" to get any critical points
keep in mind, setting the denominator to 0, also gives us critical points, however, in this case, the denominator will never be 0, so... no critical points from there
there's only 1 critical point anyway, and do a first-derivative test on it, check a number before it and after it, to see what sign the derivative has, and thus, whether the graph is going up or down, to check for any extrema
Answer:
16 3 goes into 48 16 times.
Step-by-step explanation:
48÷3 = 16 3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3=48
Answer:
Tiffany
Step-by-step explanation:
Ramon is 4 to 1 water to sugar
Tiffany is 3 to 1 water to sugar
Answer:
80 and 40 are the other angles
Step-by-step explanation: