Polar protic solvents actually speed up the rate of the unimolecular substitution reaction because the large dipole moment of the solvent helps to stabilize the transition state. The highly positive and highly negative parts interact with the substrate to lower the energy of the transition state.
Answer:
no
Explanation:
Radium is silvery, lustrous, soft, intensely radioactive. It readily oxidizes on exposure to air, turning from almost pure white to black. Radium is luminescent, corrodes in water to form radium hydroxide. Although is the heaviest member of the alkaline-earth group it is the most volatile.
Answer:
V CH4(g) = 190.6 L
Explanation:
assuming ideal gas:
∴ STP: T =298 K and P = 1 atm
∴ R = 0.082 atm.L/K.mol
∴ moles (n) = 7.80 mol CH4(g)
∴ Volume CH4(g) = ?
⇒ V = RTn/P
⇒ V CH4(g) = ((0.082 atm.L/K.mol)×(298 K)×(7.80 mol)) / (1 atm)
⇒ V CH4(g) = 190.6 L
Physical. When you simply desolve something with water, to don't actually change it. This action can be undone.
An example of a chemical reaction is when the cells within completely change. You you burn wood, you can't go back in time and un-burn it. Does that make sense?
Ans: As changes in energy levels of electrons increase, the frequencies of atomic line spectra they emit will <u>increase.</u>
The energy (E) is related to the frequency (ν) by the following equation:
E = hν
where h = planck's constant
The change in energy i between levels is:
ΔΕ = h(Δν) -----(1)
Based on the above equation, as the changes in energy levels increase, the frequency of emitted radiation will also increase.