I guess d correct answer is CaCO3
For the answer to the question above, <span>The formula for freezing point depression is </span>
<span>ΔTf = mkfi </span>
<span>kf is the freezing point constant </span>
<span>i is the Van't Hoff factor which in this case is 1 </span>
<span>m is molality (moles of solute/kg of solvent) </span>
<span>ΔTf is temperature change </span>
<span>ΔTf is 2.17 °C, the molality is the amount of solute Quinine </span>
<span>in the solvent cyclohexane. We cannot calculate moles therefore we need to substitute moles with g/mm. </span>
<span>moles = g/mm so molality=(g/mm)/kg </span>
<span>molality = (0.845/mm)/0.025 = 33.8/mm </span>
<span>2.17 = 33.8/mm(20.8) rearrange </span>
<span>mm = (33.8/2.17)(20.8) = 324g/mol</span>
Answer:
Explanation:
The correct answer is 19, 20 DHDP is more polar than DHA. This is as a result of the presence of two hydroxyl groups.
Chemical potential energy
Answer:
Tamoxifen is an irreversible, competitive inhibitor.
Explanation:
In order to binds to the active site of the estrogen receptor protein, tamoxifen have to compete with the other chemical compound, and inhibits the estrogen release, so it is a competitive inhibitor. Then, you said that when tamoxifen binds to the receptor, the protein is permanently deactivated, so it is also irreversible.