Answer:
the individual atom in the molecule
Explanation:
In chemistry, the ball-and-stick model is a molecular model of a chemical substance. Invidual spheres there represent atoms in the molecule. The bigger atomic number the atom has, the larger diameter of the spheres this atom has in this model.
I hope this answer will help you. Have a nice day !
Answer:
Mostly large grains, with a sticky texture, 55% sand, 40% clay, and 5% silt
Explanation: I took the test, hope it helps.
Answer:
produce characteristic sets of energies, depending on the differences in energy between the excited states and ground state
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Answer:
deposition
Explanation:
Sublmation- solid transforming into a gas, skipping the liquid stage.
eveporation- a liquid transformimg into a gas
melting- a solid transforming into a liquid
deposition- the opposite of sublimation (your anwser)
Answer:
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 grams
mass of oxygen = 16 grams
molar mass of surcose = 12(12) + 22(1) + 11(16) = 342 grams
number of molecules = number of moles x Avogadro's number
number of moles = number of molecules / Avogadro's number
number of moles = (2.2x10^17) / (6.02x10^23) = 3.6544 x 10^-7 moles
number of moles = mass / molar mass
mass = number of moles x molar mass
= 1.7 x 10^17/6.022 x 10^23.