Answer:
The correct option is: B. Carbon 5 only
Explanation:
Carvone is a naturally-occurring monoterpenoid consisting of a six-membered cyclic ring. <u>The </u><u><em>carbon-5</em></u><u> of this cyclic ring of Carvone is </u><u><em>chiral, </em></u><u>due to which Carvone exhibits </u><u><em>enantiomerism</em></u><u>.</u>
The two <em>enantiomeric forms</em> of Carvone are: R-(–)-carvone, or L-carvone, and S-(+)-carvone, or D-carvone.
<em><u>These two enantiomeric forms differ in the orientation of the substituents on the chiral carbon-5.</u></em>
<u />
<u>Therefore, the correct option is B. Carbon 5 only.</u>
Answer:
a) 
b) 1657 €
Explanation:
Hola,
a) En este problema, vamos a considerar el millón de litros de agua anuales, ya que con ellos podemos calcular el calor requerido para dicho calentamiento, sabiendo que la densidad del agua es de 1 kg/L:

Luego, usamos la entalpía de combustión del metano para calcular su requerimiento en kilogramos, sabiendo que la energía ganada por el agua, es perdida por el metano:


b) En este caso, consideramos que a condiciones normales de 1 bar y 273 K, 1 metro cúbico de metano cuesta 0,45 €, con esto, calculamos las moles de metano a dichas condiciones:

Con ello, los kilogramos de metano que cuestan 0,45 €:

Luego, aplicamos la regla de tres:
0.715 kg ⇒ 0.45 €
2630 kg ⇒ X
X = (2630 kg x 0.45 €) / 0.715 kg
X = 1657 €
Regards.
<span>Carrier Gas, Flow Controller, Column, Detector, Recorder
</span>First we have a cylinder containing the
carrier gas. From there, the carrier gas goes to the flow controller, which determines
how much carrier gas we are entering into the column (it doesn’t let more gas
pass through). Then, the carrier gas enters the column, which is the most
important part of the device. The sample enters the column from another place:
the injector. Then, the sample and the carrier gas go together across the
column. The interactions between the sample and the column will determine how
fast each sample component goes through the column, and so: which component
gets out earlier. So, at the end, you will have isolated each substance. Then,
each one passes (alone) through the detector, which measures something about
the sample – this information will let you know which substance it is. Finally,
the recorder provides you with the information the detector has found.
Nowadays, the recorder is a computer. In the “stone age” they just used a rudimentary
printer.