I can help you! What is your question?
Answer:
(S)-3-methoxy-3-methylbutan-2-ol
Explanation:
In this case, we have an <u>epoxide opening in acid medium</u>. The first step then is the <u>protonation of the oxygen</u>. Then the epoxide is broken to generate the most <u>stable carbocation</u>. The nucleophile (
) will attack the carbocation generating a new bond. Finally, the oxygen is <u>deprotonated</u> to obtain an ether functional group and we will obtain the molecule <u>(S)-3-methoxy-3-methylbutan-2-ol</u>.
See figure 1
I hope it helps!
Answer:
31.24 kJ
Explanation:
- SiO₂(g) + 3C(s) → SiC(s) + 2CO(g) ΔH° = 624.7 kJ/mol
First we <u>convert 3.00 grams of SiO₂ to moles</u>, using its <em>molar mass</em>:
- 3.00 g SiO₂ ÷ 60.08 g/mol = 0.05 mol
Now we <u>calculate the heat absorbed</u>, using the <em>given ΔH°</em>:
If the complete reaction of 1 mol of SiO₂ absorbs 624.7 kJ, then with 0.05 mol:
- 0.05 mol * 624.7 kJ/mol = 31.24 kJ of heat would be absorbed.
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL