1.
- The changing of liquid to a gas.
2.
- The major source of pollution.
3.
- Carbon dioxide and water vapor trapping heat given off by Earth.
4.
- Layer absorbing ultraviolet rays.
5.
- The changing of a gas to a liquid.
6.
- Layer responsible for reflecting radio waves.
7.
- The layer in which weather changes.

So I haven’t got time to answer all of it for you but the id you look at the picture of the periodic table I’ve added the top number in the red boxes are the groups and the period is how many elements down from the top it is (remember that the hydrogen and helium make up period ONE) so remember to include them when counting the elements as you go down the table
<u>Ionic Bond</u> is formed when the electronegativity difference is 0.4 > 2.0. Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
Explanation:
Electronegativity is a term that can be defined as a tendency of an atom to attract electron towards its own self.
An electronegativity of an atom is affected by
- The atomic number of the atom
- Secondly by the distance at which the valence electron are residing from the nucleus
1. In case the electronegativity difference (which is denoted by ΔEN) is less than 0.5 then the bond formed is known as N<u>onpolar covalent.
</u>
2. In case the ΔEN is in between 0.5 and 1.6, the bond formed is referred to as the<u> Polar covalent
</u>
3. In case the ΔEN is more /greater than 2.0, then the bond formed is referred to as<u> Ionic Bond</u>
<u>2 Examples of Ionic bonds</u>
- The formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom is an example of Ionic bond formation.
- Another example is the formation of NaCl from sodium (Na),which is a metal, and chloride (Cl), which is a nonmetal
6.28×1013+7.30×1011 this =13741.94
"Carbon" is an element. It is found in the fourth group of the periodic table, and it is a stable element. This means that it can not be decomposed via heating, because if an element were to break down, it would release its subatomic particles. The explanation was probably one used to describe the thermal decomposition of a compound into smaller compounds.