Step 1:
Calculate the measure of angle ∠ABC



From the triangle in the question,

Step 2:
Calculate the value of AB using the cosine rule below

By substituting the values, we will have
![\begin{gathered} b^2=a^2+c^2-2\times a\times c\times\cos B \\ b^2=10^2+15^2-2\times10\times15\times\cos 115^0 \\ b^2=100+225-300\times(-0.4226) \\ b^2=325+126.78 \\ b^2=451.78 \\ \text{Square root both sides} \\ \sqrt[]{b^2}=\sqrt[]{451.78} \\ b=21.26\operatorname{km} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20b%5E2%3Da%5E2%2Bc%5E2-2%5Ctimes%20a%5Ctimes%20c%5Ctimes%5Ccos%20B%20%5C%5C%20b%5E2%3D10%5E2%2B15%5E2-2%5Ctimes10%5Ctimes15%5Ctimes%5Ccos%20115%5E0%20%5C%5C%20b%5E2%3D100%2B225-300%5Ctimes%28-0.4226%29%20%5C%5C%20b%5E2%3D325%2B126.78%20%5C%5C%20b%5E2%3D451.78%20%5C%5C%20%5Ctext%7BSquare%20root%20both%20sides%7D%20%5C%5C%20%5Csqrt%5B%5D%7Bb%5E2%7D%3D%5Csqrt%5B%5D%7B451.78%7D%20%5C%5C%20b%3D21.26%5Coperatorname%7Bkm%7D%20%5Cend%7Bgathered%7D)
Hence,
The distance of point A to point C is = 21.26km
Answer:
x=1
x=-5
Step-by-step explanation:
we know that
The solution of the system of equations is the intersection point both graphs
In this problem there are two intersection points
so
The system has two solutions
we have
one solution is the point (-4.9, 5.4) and the other (0.92, -0.42)
see the attached figure
therefore
x=1
x=-5
Step-by-step explanation:
Answer:
Option A. 5
Step-by-step explanation:
From the question given above, the following data were obtained:
First term (a) = –3
Common ratio (r) = 6
Sum of series (Sₙ) = –4665
Number of term (n) =?
The number of terms in the series can be obtained as follow:
Sₙ = a[rⁿ – 1] / r – 1
–4665 = –3[6ⁿ – 1] / 6 – 1
–4665 = –3[6ⁿ – 1] / 5
Cross multiply
–4665 × 5 = –3[6ⁿ – 1]
–23325 = –3[6ⁿ – 1]
Divide both side by –3
–23325 / –3 = 6ⁿ – 1
7775 = 6ⁿ – 1
Collect like terms
7775 + 1 = 6ⁿ
7776 = 6ⁿ
Express 7776 in index form with 6 as the base
6⁵ = 6ⁿ
n = 5
Thus, the number of terms in the geometric series is 5.
X= 50 because 50/5 equals 10
Answer:
x=-3
Step-by-step explanation:
39 - 7X = —4 ( 7X +7 ) + 4
Distribute
39 -7x = -28x -28 +4
Combine like terms
39 -7x =-28x -24
Add 28x to each side
39 -7x+28x =-28x+28x -24
39+21x=-24
Subtract 39 from each side
39-39+21x = -24 -39
21x = -63
Divide by 21
21x/21 = -63/21
x = -3