1) Write the balanced chemical equation
2HCl + Na2 CO3 ----------> 2NaCl + H2CO3
2) Write the molar ratios:
2 mol HCl : 1 mol Na2CO3 : 2 mol NaCl : 1 mol H2CO3
3) Convert 0.15g of sodium carbonate to number of moles
3a) Calculate the molar mass of Na2CO3
Na: 2 * 23 g/mol = 46 g/mol
C: 12 g/mol =
O: 3 * 16 g/mol = 48 g/mol
molar mass = 46g/mol + 12g/mol + 48g/mol = 106 g/mol
3b.- Calculate the number of moles of Na2CO3
# moles = grams / molar mass = 0.15 g / 106 g/mol = 0.0014 mol Na2CO3
4) Calculate the number of moles of HCl from the molar proportion:
[0.0014 mol Na2CO3] * [2 mol HCl / 1 mol Na2CO3] = 0.0028 mol HCl
5) Calculate the volume of HCl from the definition of Molarity
Molarity, M = # moles / volume in liters
=> Volume in liters = # moles / M = 0.0028 mol / 0.1 M = 0.028 liters
0.028 liters * 1000 ml / liter = 28 ml.
Answer: 28 mililiters of 0.1 M HCl.
Answer:
By losing an electron
Explanation:
Electrons have a negative charge. So, losing one would give an element a more positive charge. You can usually find a hydrogen ion (H+) in substances like acids.
<u>Answer:</u> The structure of the geometrical isomers are attached below.
<u>Explanation:</u>
Cis- and Trans- isomers are the geometrical isomers which have same chemical formula but different structural formula
According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as cis-form and if the highest priority groups are on opposite side, it is known as trans-form.
We are given a chemical compound, which is 2-pentene.
In this the highest priority groups are methyl and ethyl groups.
When the groups are on the same side, it forms cis-form and when the groups are on the opposite side, it forms trans-form
The structure of the geometrical isomers are attached below.
There's a lot of capillaries in the lungs because the blood needs to be transferred and the capillaries are the smallest vessels that can do this.