Answer: a = 2 ; f = 5 ; b = 2 ; g = 2 ; c = 2 ; h = 2 ; d = 4 ; i = 5 ; e = 3 ; j = 7
Explanation: Some rules to follow while calculating sig figs is
1. If a number like 4500 is present, only two sig figs are counted, but none of the zeros are, but if 4500. has a decimal point present, then you should count all the numbers available.
2. If a number like .0005 is present, only count 5 as a sig fig, however if the number is .00050, count the 0 after the 5 in this example (this would then have two sig figs.
Explanation
NaCl: Ionic crystal lattice forces
Hg: Metallic bonding
CO₂: London dispersion forces
CH₄: London dispersion forces
Li₂O: Ionic crystal lattice forces
Ag: Metallic bonds
Ionic crystal lattice forces are strong electrostatic force of attraction between oppositely charged ions arranged into a crystal lattice of ionic compound. NaCl and Li₂O are ionic compounds
London dispersion forces holds the molecules of carbon dioxide and methane. They are weak attractions found between non-polar (and polar) molecules.
Metallic bonds exists between Mercury and Gold atoms. This is due to sea of electrons present.
Answer:
Conductivity meter
Explanation:
A conductivity meter is normally used to measure the amount of electrical current or conductance in a solution. Conductivity is most useful in determining the overall health of a natural water body.
A pH paper is used to determine the pH of a solution. This is done by dipping part of the paper into a solution of interest and watching the color change. The pH paper comes in a color-coded scale indicating the pH that something has when the paper turns a certain color.
An indicator is an organic compound that changes its colour depending on the pH of the solution.
Since neutralization reaction can only be monitored by monitoring the pH of the solution, a conductivity meter cannot be used to monitor the progress of a neutralization reaction since it does not monitor the change in pH of the system under study.
A unit of mass used to express atomic and molecular weights, equal to one-twelfth of the mass of an atom of carbon-12. It is equal to approximately 1.66 x 10-27<span> kg.</span>
Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.