Answer:
0.007%
Step-by-step explanation:
4000/28=0.007%
 
        
             
        
        
        
Step-by-step explanation:
change the unit
50 km per 1 hour
50 km/h = 50,000 m/ 3600 s = 13.8 m/s
the lorry speed is 13.5 m/s or 0.3 m slower than the limit
 
        
             
        
        
        
Answer:
(-2, 3)
Step-by-step explanation:
4x + 5y = 7
3x - 2y = -12
Let's solve this by elimination. We want to eliminate one variable at a time. This means we need to multiply the equations to create a common multiple to cancel out a variable.
Let's work with y.
5y and -2y: For these values to cancel out, we need to multiply each term to create a common multiple.
2(4x + 5y = 7)
5(3x - 2y = -12)
Multiply.
8x + 10y = 14
15x - 10y = -60
Eliminate.
23x = -46
Divide both sides by 23.
x = -2
Now that we know x, let's plug it back into one of equations to find y.
4x + 5y = 7
4(-2) + 5y = 7
Multiply.
-8 + 5y = 7
Add.
5y = 15
Divide.
y = 3
Now we know x and y; let's plug both back into the equation we have not checked yet.
3x - 2y = -12
3(-2) - 2(3) = -12
Multiply.
-6 - 6 = -12
Subtract.
-12 = -12
Your solution is correct.
(-2, 3)
Hope this helps!
 
        
             
        
        
        
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
 
        
        
        
Answer:
2.33 = BC
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp / adj
tan B = AC / BC
tan 25 = AC / 5
Multiply each side by 5
5 tan 25 = BC
2.331538291 = BC
To the nearest hundredth
2.33 = BC