Cans aren't entirely made of tin because of rusting. When scratched(which happens quite frequently to cans) the tin is in more danger of rusting. This is why the cans are coated in a layer of tin rather than the whole can is made of it.
If one starts with 0.020 g of Mg, 0.0008 moles of H2 would be made if the reaction is complete.
Going by the balanced equation of reaction in the image, 1 mole of Mg will produce 1 mole of H2 in a complete reaction.
If 0.020 g of Mg is started with:
mole of Mg = mass/molar mass
= 0.020/24.3
= 0.0008 moles
Since the mole of Mg to H2 is 1:1, thus, 0.0008 moles of H2 will also be made from the reaction.
More on stoichiometry can be found here: brainly.com/question/9743981
Periodic table is arranged according to atomic size and other properties.
Answer:
[S₂] = 1.27×10⁻⁷ M
Explanation:
2 H₂S(g) ⇄ 2 H₂(g) + S₂(g), Kc=1,625x10⁻⁷
The equation of this reaction is:
1,625x10⁻⁷ = ![\frac{[H_2]^2[S_2]}{[H_{2}S]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_%7B2%7DS%5D%5E2%7D)
The equilibrium concentrations are:
[H₂S] = 0,162 - 2x
[H₂] = 0,184 + 2x
[S₂] = x
Replacing:
1,625x10⁻⁷ = ![\frac{[0,184+2x]^2[x]}{[0,162-2x]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B0%2C184%2B2x%5D%5E2%5Bx%5D%7D%7B%5B0%2C162-2x%5D%5E2%7D)
Solving:
4x³ + 0,736x² + 0,033856x - 4,3x10⁻⁹
x = 1.27×10⁻⁷
Thus, concentration of S₂ is:
<em>[S₂] = 1.27×10⁻⁷ M</em>