Answer:
H+ and NO3- ions
Explanation:
The Pb²+ ions react with the SO4²‐ ions to form a solid precipitate, i.e. they bond together and undergo a phase change;
On the contrary, the H+ and NO3- ions are aqueous ions before the reaction and the same after the reaction, i.e. they don't change;
Hence, the H+ and NO3- ions are spectator ions
The way to do this type of question is to consider what changes and what doesn't, look at phase changes and oxidation state changes
Answer:
The value of Kc for the reaction is 3.24
Explanation:
A reversible chemical reaction, indicated by a double arrow, occurs in both directions: reagents transforming into products (
direct reaction) and products transforming back into reagents (inverse reaction)
Chemical Equilibrium is the state in which direct and indirect reactions have the same reaction rate. Then taking into account the rate constant of a direct reaction and its inverse the chemical constant Kc is defined.
Being:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients, the equilibrium constant with the following equation:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients divided by the multiplication of the concentrations of the reagents also raised to their stoichiometric coefficients.
Then, in the reaction 3A(g) + 2B(g) ⇔ 2C(g), the constant Kc is:
![Kc=\frac{[C]^{2} }{[A]^{3} *[B]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7B2%7D%20%7D%7B%5BA%5D%5E%7B3%7D%20%2A%5BB%5D%5E%7B2%7D%20%7D)
where:
- [A]= 0.855 M
- [B]= 1.23 M
- [C]= 1.75 M
Replacing:

Solving you get:
Kc=3.24
<u><em>The value of Kc for the reaction is 3.24</em></u>
answer:
atomic number
the same chemical element is characterized by the number of protons in the nucleus that determines the total positive charge.
Answer: option A. The surroundings absorb heat from the reaction mixture
Explanation: