Q = ?
Cp = 0.450 j/g°C
Δt = 49.0ºC - 25ºC => 24ºC
m = 55.8 g
Q = m x Cp x Δt
Q = 55.8 x 0.450 x 24
Q = 602.64 J
hope this helps!
Answer: Li is the reducing agentg and O is the oxidizing agent.
Explanation:
1) The oxidizing agent is the one that is reduced and the reducing agent is the one that is oxidized.
2) The given reaction is:
4Li(s) + O₂ (g) → 2 Li₂O(s)
3) Determine the oxidation states of each atom:
Li(s): oxidation state = 0 (since it is alone)
O₂ (g): oxidation state = 0 (since it is alone)
Li in Li₂O (s) +1
O in Li₂O -2
That because 2× (+1) - 2 = 0.
4) Determine the changes:
Li went from 0 to + 1, therefore it got oxidized and it is the reducing agent.
O went from 0 to - 2, therefore it got reduced and it is the oxidizing agent.
Using Avogadros number, we can get that 1 mole of an atom
contain 6.022 x 10^23 atoms. Therefore we can use this conversion factor to get
the number of moles:
moles ZnCO3 = 6.11 x 10^22 atoms * (1 mole / 6.022 x 10^23
atoms) = 0.10146 moles
The molar mass of ZnCO3 is about 125.39 g/mol, therefore the
mass is:
mass ZnCO3 = 0.10146 moles * (125.39 g / mol)
<span>mass ZnCO3 = 12.72 g</span>
Answer:
Molecules
Explanation:
If you had more than one atom chemically bonded together, then regardless of the types of atoms that are bonded, you're going to have a molecule regardless.
Answer:

Explanation:
Hello!
In this case, according to the chemical reaction by which HBr reacts with Ba(OH)2:

We can see there is a 2:1 mole ratio between the acid and the base; thus, at the equivalent point we can write:

Therefore, for is to compute the volume of the used base, we proceed as shown below:

And we plug in to obtain:

Best regards!