(a) The tension on the wire when the two charges have opposite signs is 383.5 N.
(b) The tension on the wire if both charges were negative is 3.640.25 N.
The given parameters;
- <em>first charge, q₁ = 8.75 μC </em>
- <em>second charge, q₂ = -6.5 μC </em>
- <em>electric field, E = 1.85 x 10⁸ N/C</em>
- <em>distance between the two charges, r = 2.5 cm</em>
<em />
(a)
The attractive force between the charges is calculated as follows;

The force on the negative charge due to the electric field is calculated as follows;

The tension on the wire is the resultant of the two forces and it is calculated as follows;

(b) when the two charges are negative
The repulsive force between the two charges is calculated as follows;

The force on the first negative charge due to the electric field is calculated as follows;

The force on the second negative charge due to the electric field is calculated as follows;

The tension on the wire is the resultant of the three forces and it is calculated as follows;

Learn more here:brainly.com/question/19565286
<h2>Answer: 12.24m/s</h2>
According to <u>kinematics</u> this situation is described as a uniformly accelerated rectilinear motion. This means the acceleration while the car is in motion is constant.
Now, among the equations related to this type of motion we have the following that relates the velocity with the acceleration and the distance traveled:
(1)
Where:
is the Final Velocity of the car. We are told "the car comes to a stop after travelling", this means it is 0.
is the Initial Velocity, the value we want to find
is the constant acceleration of the car (the negative sign means the car is decelerating)
is the distance traveled by the car
Now, let's substitute the known values in equation (1) and find
:
(2)
(3)
Multiplying by -1 on both sides of the equation:
(4)
(5)
Finally:
>>>This is the Initial velocity of the car
You need to attach the answer choices
They deleted my answer. again the answer is gravity