Practically yes
So
If mass is more output may come less so it affects the efficiency practically
But thepritically it doesn't
Answer:
F = 1400 N
Explanation:
It is given that,
Mass of the ball, m = 70 kg
It is moving with an acceleration of 20 m/s². We need to find the force exerted by the ball.
Force is given by the product of mass and acceleration. So,
F = ma

So, the force of 1400 N is exerted by a metal ball.
Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.
Answer:
The air resistance on the skydiver is 68.6 N
Explanation:
When the skydiver is falling down, there are two forces acting on him:
- The force of gravity, of magnitude
, in the downward direction (where m is the mass of the skydiver and g is the acceleration due to gravity)
- The air resistance,
, in the upward direction
So the net force on the skydiver is:

where
m = 7.0 kg is the mass

According to Newton's second law of motion, the net force on a body is equal to the product between its mass and its acceleration (a):

In this problem, however, the skydiver is moving with constant velocity, so his acceleration is zero:

Therefore the net force is zero:

And so, we have:

And so we can find the magnitude of the air resistance, which is equal to the force of gravity:

Answer:
The time taken to travel is, t = 12 minutes
Explanation:
Given data,
The speed of the car, v = 60 km/h
The distance of travel, d = 12 km
The time taken for the travel is t = ?
The speed is defined as the distance divided by the time taken to travel. The formula for speed is,
v = d/t
∴ t = d/v
t = 12 km / 60 km/h
t = 0.2 h
t = 12 minutes
Hence, the time taken to travel is, t = 12 minutes.