25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Answer:A) he needs to find the net force acting on an object in a direction.
Explanation:
Answer:
a. v₁ = 16.2 m/s
b. μ = 0.251
Explanation:
Given:
θ = 15 ° , r = 100 m , v₂ = 15.0 km / h
a.
To determine v₁ to take a 100 m radius curve banked at 15 °
tan θ = v₁² / r * g
v₁ = √ r * g * tan θ
v₁ = √ 100 m * 9.8 m/s² * tan 15° = 16.2 m/s
b.
To determine μ friction needed for a frightened
v₂ = 15.0 km / h * 1000 m / 1 km * 1h / 60 minute * 1 minute / 60 seg
v₂ = 4.2 m/s
fk = μ * m * g
a₁ = v₁² / r = 16.2 ² / 100 m = 2.63 m/s²
a₂ = v₂² / r = 4.2 ² / 100 m = 0.18 m/s²
F₁ = m * a₁ , F₂ = m * a₂
fk = F₁ - F₂ ⇒ μ * m * g = m * ( a₁ - a₂)
μ * g = a₁ - a₂ ⇒ μ = a₁ - a₂ / g
μ = [ 2.63 m/s² - 0.18 m/s² ] / (9.8 m/s²)
μ = 0.251
Answer:
C. Heat
Explanation:
HEAT is energy that is transferred due to a difference in temperatures.
I hope it helps! Have a great day!
Answer: 0.25 seconds.
Explanation:
The yo-yo does 240 revolutions in one minute, and we know that one minute has 60 seconds, then the revolutions per second can be calculated as:
240 rev/60s = 4 rev/s, this will be the frequency of the yo-yo
The frequency is actually written as: f = 4 Hz = 4 s^-1
We want to find the period of this yo-yo.
The period is the duration of one cycle, and we have the relation:
f = 1/T
Where f is the frequency and T is the period, then:
T = 1/f
And we know the value of f, it is f = 4 s^-1
Then the period will be:
T = 1/(4 s^-1) = (1/4) s
Then the period of the yo-yo is 1/4 seconds = 0.25 seconds.