Answer:
option A
Explanation:
given,
distance between two masses is doubled
new distance, r' = 3 r
using gravitational force equation
............(1)
new gravitational force
now from the given condition
now, from equation (1)
now, the change in gravitational force factor is equal to
Hence, the correct answer is option A
Answer:Force on -7 uC charge due to charge placed at x = - 10cm
now we will have
towards left
similarly force due to -5 uC charge placed at x = 6 cm
now we will have
towards left
Now net force on 7 uC charge is given as
towards left
Explanation:
Answer:
Explanation:
Given
Ship A velocity is 40 mph and is traveling 35 west of north
Therefore in 2 hours it will travel 
thus its position vector after two hours is

similarly B travels with 20 mph and in 2 hours
![=20\times 2=40 miles Its position vector[tex]r_B=40sin80\hat{i}+40cos80\hat{j}](https://tex.z-dn.net/?f=%3D20%5Ctimes%202%3D40%20miles%20%3C%2Fp%3E%3Cp%3EIts%20position%20vector%5Btex%5Dr_B%3D40sin80%5Chat%7Bi%7D%2B40cos80%5Chat%7Bj%7D)
Thus distance between A and B is



Velocity of A

Velocity of B

Velocity of A w.r.t B


Answer:The human eye is sensitive to yellow-green light having a frequency of about 5.5*10^{14} ... What is the energy in joules of the photons associated with this light? ... As the wavelength and frequency of a wave are related, we can find the energy ... In order to find this value, we need Planck's Constant, h=6.626×10−34 J⋅s h ...
Explanation:
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation: