We have that
<span>tan(theta)sin(theta)+cos(theta)=sec(theta)
</span><span>[sin(theta)/cos(theta)] sin(theta)+cos(theta)=sec(theta)
</span>[sin²<span>(theta)/cos(theta)]+cos(theta)=sec(theta)
</span><span>the next step in this proof
is </span>write cos(theta)=cos²<span>(theta)/cos(theta) to find a common denominator
so
</span>[sin²(theta)/cos(theta)]+[cos²(theta)/cos(theta)]=sec(theta)<span>
</span>{[sin²(theta)+cos²(theta)]/cos(theta)}=sec(theta)<span>
remember that
</span>sin²(theta)+cos²(theta)=1
{[sin²(theta)+cos²(theta)]/cos(theta)}------------> 1/cos(theta)
and
1/cos(theta)=sec(theta)-------------> is ok
the answer is the option <span>B.)
He should write cos(theta)=cos^2(theta)/cos(theta) to find a common denominator.</span>
Step-by-step explanation:
so what you need to do is answer the questions with () and then do the other part
Answer:
a^3-125
Step-by-step explanation:
(a-5)(a^2+5a+25)
a^3+5a^2+25a-5a^2-25a-125
a^3+5a^2-5a^2+25a-25a-125
a^3-125
You have to build the triangles.
They are such that:
h is the common height
x is the horizontal distance from the plane to one stone
Beta is the angle between x and the hypotenuse
Then in this triangle: tan(beta) = h / x ......(1)
1 - x is the horizontal distance from the plane to the other stone
alfa is the angle between 1 - x and h
Then, in this triangle: tan (alfa) = h / [1 -x ] ...... (2)
from (1) , x = h / tan(beta)
Substitute this value in (2)
tan(alfa) = h / { [ 1 - h / tan(beta)] } =>
{ [ 1 - h / tan(beta) ] } tan(alfa) = h
[tan(beta) - h] tan(alfa) = h*tan(beta)
tan(beta)tan(alfa) - htan(alfa) = htan(beta)
h [tan(alfa) + tan(beta) ] = tan(beta) tan (alfa)
h = tan(beta)*tan(alfa) / (t an(alfa) + tan(beta) )
Answer:
placing the needle of the compass on one end of the line segment.