Answer:
f(-3)= - (-3)+5= +3 +5 = 8
The equation in spherical coordinates will be a constant, as we are describing a spherical shell.
r(φ, θ) = 8 units.
<h3>
How to rewrite the equation in spherical coordinates?</h3>
The equation:
x^2 + y^2 + z^2 = R^2
Defines a sphere of radius R.
Then the equation:
x^2 + y^2 + z^2 = 64
Defines a sphere of radius √64 = 8.
Then we will have that the radius is a constant for any given angle, then we can write r, the radius, as a constant function of θ and φ, the equation will be:
r(φ, θ) = 8 units.
If you want to learn more about spheres, you can read:
brainly.com/question/10171109
Step-by-step explanation:
lícita; de navegar y comerciar; de peticionar a las autoridades; de entrar, permanecer, transitar y salir del territorio argentino; de publicar sus ideas por la prensa sin censura
The easiest way to find the vertex is to convert this standard form equation into vertex form, which is y = a(x - h)^2 + k.
Firstly, put x^2 - 10x into parentheses: y = (x^2 - 10x) + 30
Next, we want to make what's inside the parentheses a perfect square. To do that, we need to divide the x coefficient by 2 and square it. In this case, the result is 25. Add 25 inside the parentheses and subtract 25 outside of the parentheses: y = (x^2 - 10x + 25) + 30 - 25
Next, factor what's inside the parentheses and combine like terms outside of the parentheses, and your vertex form is: y = (x - 5)^2 + 5.
Now going back to the formula of the vertex form, y = a(x - h)^2 + k, the vertex is (h,k). Using our vertex equation, we can see that the vertex is (5,5).