Let

be the solid. Then the volume is

which follows from the facts that

(by computing the Jacobian)
and

(we take the positive solution, since it's clear that

lies above the

-

plane)

(again, taking the positive root for the same reason)





Difference in doughnuts = 50 - 40 = 10
Difference in money = 15 + 5 = 20
20 ÷ 10 = $2
Each doughnut costs $2
<em>Check:</em>
40 x 2 + 5 = $85
50 x 2 -15 = $85
Ravi has $85 at first.
Each doughnut costs $2
These are two questions and two answers.
Question 1) Which of the following polar equations is equivalent to the parametric equations below?
<span>
x=t²
y=2t</span>
Answer: option <span>A.) r = 4cot(theta)csc(theta)
</span>
Explanation:
1) Polar coordinates ⇒ x = r cosθ and y = r sinθ
2) replace x and y in the parametric equations:
r cosθ = t²
r sinθ = 2t
3) work r sinθ = 2t
r sinθ/2 = t
(r sinθ / 2)² = t²
4) equal both expressions for t²
r cos θ = (r sin θ / 2 )²
5) simplify
r cos θ = r² (sin θ)² / 4
4 = r (sinθ)² / cos θ
r = 4 cosθ / (sinθ)²
r = 4 cot θ csc θ ↔ which is the option A.
Question 2) Which polar equation is equivalent to the parametric equations below?
<span>
x=sin(theta)cos(theta)+cos(theta)
y=sin^2(theta)+sin(theta)</span>
Answer: option B) r = sinθ + 1
Explanation:
1) Polar coordinates ⇒ x = r cosθ, and y = r sinθ
2) replace x and y in the parametric equations:
a) r cosθ = sin(θ)cos(θ)+cos(θ)
<span>
b) r sinθ =sin²(θ)+sin(θ)</span>
3) work both equations
a) r cosθ = sin(θ)cos(θ)+cos(θ) ⇒ r cosθ = cosθ [ sin θ + 1] ⇒ r = sinθ + 1
<span>
b) r sinθ =sin²(θ)+sin(θ) ⇒ r sinθ = sinθ [sinθ + 1] ⇒ r = sinθ + 1
</span><span>
</span><span>
</span>Therefore, the answer is r = sinθ + 1 which is the option B.
Answer:
c<-3
Step-by-step explanation:
move the constant to the right-hand side and change its sing
Then canculate the difference
Then divide both sides for the inequality of 3