Answer is: N₂ + 3H₂ → 2NH₃.
NH₃ is ammonia.
The Haber process is procedure for the production of ammonia, in this process atmospheric nitrogen (N₂) is converted to ammonia (NH₃):
N₂ + 3H₂ ⇄ 2NH₃ ΔrH = -92 kJ/mol.
In one molecule of the ammonia, there are three hydrogen atoms and one nitrogen atom.
Ammonia (NH₃) shows basic character in aqueous solution:
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻.
Answer:
V = 5 cm³
ρ = 4 g/cm³
Explanation:
Step 1: Calculate the volume (V)
We have a wooden cuboid of dimensions 5 cm × 1 cm × 1 cm. We can calculate its volume using the following expression.
V = 5 cm × 1 cm × 1 cm
V = 5 cm³
Step 2: Calculate the density (ρ)
The density is equal to the mass divided by the volume.
ρ = m / V
ρ = 20 g / 5 cm³
ρ = 4 g/cm³
Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>