Answer: because of isotopes
relative atomic mass =(75/100 × 35) + (25/100 × 37) = 35.5
isotopes of any element behave the same chemically because neutrons do not have any charge
Explanation:
plz mark brainliest if helps
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
<u>Explanation</u>:
The standard enthalpy change of reaction, Δ
H
∘
, is given to you in kilojoules per mole, which means that it corresponds to the formation of one mole of carbon dioxide.
C
(s] + O
2(g]
→
CO
2(g]
Remember, a negative enthalpy change of reaction tells you that heat is being given off, i.e. the reaction is exothermic.
First to convert grams of carbon into moles,
use carbon's molar mass(12.011 g).
Moles of C = mass in gram / molar mass
= 0.327 g / 12.011 g
Moles of C = 0.027 moles
Now, in order to determine how much heat is released by burning of 0.027 moles of carbon to form carbon-dioxide.
= 0.027 moles C
393 kJ
Heat released = 10.611 kJ.
So, when 0.027 moles of carbon react with enough oxygen gas, the reaction will give off 10.611 kJ of heat.
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
Answer: 2
Explanation: Greenhouse gases are very important in keeping our planet just right. If we have too many Greenhouse gases it would be too hot, but we can't eliminate all of them or it will be too cold
D. An animal decaying after it dies seem to be the right answer hopefully.
Answer:
2.05moles
Explanation:
The balanced chemical equation in this question is as follows;
Sn + 2H2SO4 → SnSO4 + SO2 + 2H2O
Based on the above equation, 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
However, the mass of SnSO4 produced is 219.65 grams. Using mole = mass/molar mass, we can find the number of moles of SnSO4 produced.
Molar mass of SnSO4 where Sn = 118.7, S = 32, O = 16
= 118.7 + 32 + 16(4)
= 150.7 + 64
= 214.7g/mol
mole = 219.65/214.7
mole = 1.023mol
Therefore, if 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
1.023 mol of SnSO4 produced will cause: 1.023 × 2/1
= 2.046moles of H2SO4 to react.