Answer:
A conclusion derived from evidence and logical reasoning
Explanation:
<u>Answer:</u> The atomic weight of the second isotope is 64.81 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of atomic masses of each isotope each multiplied by their natural fractional abundance
Formula used to calculate average atomic mass follows:
.....(1)
We are given:
Let the mass of isotope 2 be 'x'
Mass of isotope 1 = 62.9 amu
Percentage abundance of isotope 1 = 69.1 %
Fractional abundance of isotope 1 = 0.691
Mass of isotope 2 = 'x'
Percentage abundance of isotope 2 = 30.9%
Fractional abundance of isotope 2 = 0.309
Average atomic mass of copper = 63.5 amu
Putting values in equation 1, we get:
![\text{Average atomic mass of copper}=[(62.9\times 0.691)+(x\times 0.309)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D%5B%2862.9%5Ctimes%200.691%29%2B%28x%5Ctimes%200.309%29%5D)

Hence, the atomic weight of second isotope will be 64.81 amu.
Answer:
The answer is the B. Proteins
Explanation:
It is known that Ribosomes are the factory to synthesize proteins. This is their function. In cell zones where ribosomes are abundant, proteins are actively produced
Acid base reactions also known as neutralization reactions are reactions that occur between acids and bases thus the name. Anytime this happens the product will niether an acid or base it will be neutralized to a neutral pH as in that of pure water pH 7.
Precipitation reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid called a precipitate. Whether or not such a reaction occurs can be determined by using the solubility rules for common ionic solids.