The reaction for burning of charcoal or complete combustion is as follows:

From the above balanced reaction, 1 mole of carbon releases 1 mole of
gas.
Converting mass of charcoal into moles as follows:

Molar mass of pure carbon is 12 g/mol thus,

The same moles of
is released. Converting these moles into mass as follows:
m=n×M
Molar mass of
is 44 g/mol thus,

Converting mass into kg,

Thus, total mass of gas released is 5.5 kg.
M=7M(H₂O)
M=7*18.015 g/mol = 126.105 g/mol
Answer:
because our planet is spinning
which means the objects near the equator are moving at much faster velocities than objects at higher latitudes
I hope this helps✌
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
The answer is the bohr model was molded after the solar system