Scientists measured a drop in the average global temperature of about 1 degree F (0.6 degrees C).
Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
Answer:
water evaportaes from heat it then turns into a gas then can go into a solid one day and repeat the cycle
Explanation:
Actually when we burn metal salts, we cannot actually
really see distinct lines to appear because in reality, they are not really
visible to the human eye. There is only a certain range of wavelength of light that
our eyes can see.
To state in other way, some metal salts will give off light which has wavelengths that are outside of the visible region of the electromagnetic spectrum.<span> </span>
Answer : The
ion concentration is,
and the pH of a buffer is, 2.95
Explanation : Given,

Concentration of
(weak acid)= 0.26 M
Concentration of
(conjugate base or salt)= 0.89 M
First we have to calculate the value of
.
The expression used for the calculation of
is,

Now put the value of
in this expression, we get:



Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[KNO_2]}{[HNO_2]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BKNO_2%5D%7D%7B%5BHNO_2%5D%7D)
Now put all the given values in this expression, we get:


The pH of a buffer is, 2.95
Now we have to calculate the
ion concentration.
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
![2.95=-\log [H_3O^+]](https://tex.z-dn.net/?f=2.95%3D-%5Clog%20%5BH_3O%5E%2B%5D)
![[H_3O^+]=1.12\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D1.12%5Ctimes%2010%5E%7B-3%7DM)
The
ion concentration is, 