Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
<em>Answer:</em>
4) the one that is reduced, which is the oxidizing agent
<em>Explanation:</em>
<em>An oxidizing agent is one that causes oxidation by gaining electrons from another atom/molecule. </em>
Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
Answer:
5: 0.16
6: 50
Explanation:
Question 5:
We can use the equation density = mass/ volume.
We already have the mass (12g), but now we need to find the volume of the cylinder.
The equation for this is πr²h
So we know the radius is 2 and the height is 6.
π x (2)² x 6 = 24π = 75.398cm³
Now we can use the density equation above:
12/75.398 = 0.1592g/cm³ = 0.16g/cm³.
Question 6:
This time, we have to rearrange the equation density = mass/ volume to find the mass.
We know mass = density x volume.
From the question, the density is 2.5g/mL and the volume is 20mL.
Following the equation above, we do 2.5 x 20 to get 50g.