The standard equation of a circle with centre (xc,yc) and radius R is given by

Substituting
centre (xc,yc) = (4,-3)
R=2.5
The equation is therefore



or
(x-4)^2+(y+3)^2=6.25
Answer:
Area of rectangle: 256
Area of triangle 1: 24
Area of triangle 2: 16
Area of triangle 3: 96
Area of trapezoid: 120
Step-by-step explanation:
I just did the question on the thing so Ik I'm right.
-The graph measures by twos. To get the area of the rectangle get the base times height of it. That would be 16x16=256.
-Get base (8) times height (6) of triangle 1 then divide by 2, remember to count the squares by 2 for finding all areas. The formula would be 1/2(b)(h) because dividing by 2 is the same as multiplying times 1/2. Plug it in and (8)(6)=48 then divide by 2 which equals 24.
-Same formula for triangle 2. Plug it in and (8)(4)=32 and divide by 2 and it equals 16.
-Same formula for triangle 3. Plugged in is (12)(16)=192 divide by 2 and it equals 96.
-To find the area of the trapezoid get your rectangle area (256) and subtract all the triangle areas. So 256 - 6 - 16 - 96 = 120.
Answer: w=5 , L= 2+2(5)=12
Step-by-step explanation:
L=2+2W
A= 60
LxW=60, now we will replace the L
(2+2W)(W)=60 we multiply
2w^2+2w=60
2w^2+2w-60=0 we divide by 2 the equation so we can work easier
w^2+w-30=0
find out w using the quadratic equation
we will get 2 solution,
w=5 and another solution is -6, which is not valid, as the side can not be negative
2x + 3y = 1470
3y = -2x + 1470
y = -2/3x + 490 is the equation in slope intercept form.
slope = -2/3
y intercept = 490
allso, can u mark brainlist