11 is 110 for x and y
12 is 90 degrees for x and y
13 is also 90 degrees for x and y
Using the <u>normal distribution and the central limit theorem</u>, it is found that the interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of
.
- The standard deviation is of
.
- Sample of 100, hence

The interval that contains 95.44% of the sample means for male students is <u>between Z = -2 and Z = 2</u>, as the subtraction of their p-values is 0.9544, hence:
Z = -2:

By the Central Limit Theorem




Z = 2:




The interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213
Answer: the value of the account after 6 years is $101559.96
Step-by-step explanation:
If $64,000 is invested in an IRA account, then
Principal = $64,000
So P = 64,000
The rate at which $64000 was compounded is 8%
So r = 8/100 = 0.08
If it is compounded once in a year, this means that it is compounded annually (and not semi annually, quarterly or others). So
n = 1
We want to determine the value of the account after 6 years, this means
time, t = 6
Applying the compound interest formula,
A = P(1 + r/n)^nt
A = amount after n number of years
A = 64000( 1 + 0.08/1)^1×6
A = 64000(1.08)^6
A= 64000×1.58687432294
A= 101559.956668416
Approximately $101559.96 to 2 decimal places
Unsure of what you're asking.
If you have an algebraic expression in front of you and see a number there, you could label it as "known" or "a known quantity." Another word that comes to mind is "constant."