Answer:
281.25 J
Explanation:
We are told that the two objects with masses m and 3m.
Also that energy stored in the spring is 375 joules.
Now, initially the centre of mass of the system took place at rest, it means v1 = v and v2 = v/3
Thus, from principle of conservation of energy, we have;
½mv² + ½(3m)(v/3)² = 375J
(m + 3m/9)½v² = 375
(4/3)m × ½v² = 375
Multiply both sides by ¾ to get;
½mv² = 375 × ¾
½mv² = 281.25 J
Therefore, energy of lighter body is 281.25 J
Answer:
Newton's Third Law of Motion
Explanation:
Newton's Third Law of Motion which states that, for every action there is an equal but opposite reaction.
This ultimately implies that, in every interaction, there is a pair of forces acting on the two interacting objects.
In this scenario, a ball bounced by a basketball player on the floor bounces back up at her.
According to Newton's Third Law of Motion, the statement above simply means that in every interaction, there is a pair of forces acting on the two interacting objects i.e the ball and floor. The size of the force on the ball equals the size of the force on the floor. These two forces are called action and reaction forces and are the subject of Newton's third law of motion.
Hence, the ball bounced by the basketball player on the floor would bounce back in equal magnitude.
We know, R = V / I
Here, V = 86 V
I = 3 A
Substitute their values,
R = 86 / 3
R = 28.67 Ohm
In short, Your Answer would be 28.67 Ohms
Hope this helps!
A is not the correct answer because the amplitude and oscillation and there is 1/2 A in oscillation