C is the diffraction angle.... step by step explanation= I think it’s that I might be wrong lol
Answer:
![125\sqrt[4]{8}](https://tex.z-dn.net/?f=125%5Csqrt%5B4%5D%7B8%7D)
Explanation:
A number of the form

can be re-written in the radical form as follows:
![\sqrt[n]{a^m}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D)
In this problem, we have:
a = 1,250
m = 3
n = 4
So, if we apply the formula, we get
![1,250^{\frac{3}{4}}=\sqrt[4]{(1,250)^3}](https://tex.z-dn.net/?f=1%2C250%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B%281%2C250%29%5E3%7D)
Then, we can rewrite 1250 as

So we can rewrite the expression as
![=\sqrt[4]{(2\cdot 5^4)^3}=5^3 \sqrt[4]{2^3}=125\sqrt[4]{8}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B4%5D%7B%282%5Ccdot%205%5E4%29%5E3%7D%3D5%5E3%20%5Csqrt%5B4%5D%7B2%5E3%7D%3D125%5Csqrt%5B4%5D%7B8%7D)
R 1,2 = 27.5 + 33.0 = 60.5 Ohms
1/ R 1,2,3 = 1/ 60.5 + 1 / 22 = 82.5 / 1331
R 1, 2, 3 = 1331 / 82.5 = 16.13 Ohms
I = U / R
I = 9 V / 16.13 Ohms = 0.557 A ≈ 0.56 A
Answer: C ) 0.56 Amps
Answer:
a) T = (m1cT1 + m2cT2 - m2Lf)/(m1c + m2c)
b) T = 295.37 K
Explanation:
Given;
Initial temperature of tea T1 = 31 C
Initial temperature of ice T2 = 0 C
Mass of tea m1 = 0.89 kg
Mass of ice m2 = 0.075kg
The heat capacity of both water and tea c = 4186 J/(kg⋅K)
the latent heat of fusion for water is Lf = 33.5 × 10^4 J/kg
And T = the final temperature of the mixture
Heat loss by tea = heat gained by ice
m1c∆T1 = m2c∆T2 + m2Lf
m1c(T1-T) = m2c(T-T2) + m2Lf
m1cT1 - m1cT = m2cT - m2cT2 + m2Lf
m1cT + m2cT = m1cT1 + m2cT2 - m2Lf
T(m1c + m2c) = m1cT1 + m2cT2 - m2Lf
T = (m1cT1 + m2cT2 - m2Lf)/(m1c + m2c)
Substituting the values;
T = (m1cT1 + m2cT2 - m2Lf)/(m1c + m2c)
T = (0.89×4186×31 + 0.075×4186×0 - 0.075×33.5 × 10^4)/(0.89×4186 + 0.075×4186)
T = 22.37 °C
T = 273 + 22.37 K
T = 295.37 K