From my research, the image supports the question. From the graph given, we can construct the equation of the line using the two-point formula. Using the given value of 601 K, we can solve for the missing value of altitude.
y - y1 = [(y2 - y1)/(x2 - x1)](x- x1)
y - 147.52 = [ (567 - 147.54)/(78.11 - 18.4) ](x - 18.4)
Substituting y = 601 to solve for x:
601 - 147.52 = [ (567 - 147.54)/(78.11 - 18.4) ](x - 18.4<span>)
</span>x = 83
Therefore, the probe's instruments will fail at 83 kilometers.
Answer:
a)
, b)
, c) 
Explanation:
a) The turbine is modelled by means of the First Principle of Thermodynamics. Changes in kinetic and potential energy are negligible.

The mass flow rate is:

According to property water tables, specific enthalpies and entropies are:
State 1 - Superheated steam




State 2s - Liquid-Vapor Mixture




The isentropic efficiency is given by the following expression:

The real specific enthalpy at outlet is:



State 2 - Superheated Vapor




The mass flow rate is:


b) The temperature at the turbine exit is:

c) The rate of entropy generation is determined by means of the Second Law of Thermodynamics:




D = v^2 / 2ug
d= 3.5^2 / 0,15 x 9.8 m/s^2
the answer should be around 4.2m
hope this helps
Answer:
In thermodynamics, heat is transferred energy that moves between substances or systems because of their temperature difference. According to the first law of thermodynamic and the law of energy conversion s a form of energy, heat is cannot be created or destroyed only moves from one form to other.
The stone gets heat energy from fire and moves this heat energy or thermal energy to water as it cools off and the water warms up. Heat moves or is transferred spontaneously from the hot stone into the cold water. Eventually, the stone and water have the same temperature and water becomes heated. At the time of heat flowing out of the stone into the water, the heat energy became less ordered, due to spreading out through both the stone and the water. This is a net increase in entropy which is the second law of entropy.