I think the answer should be D.<span>It reduces the amount of thermal energy that is transferred from outside to inside the container. </span>
Answer:
summer
Explanation:
Notice the higher density of the rays of the sun hitting straight the latitudes below the equator.
<u>Voltage:</u>
It is basically the difference between the charges of the materials on the ends of the Wire
<em>also known as potential difference</em>
It is very similar to the movement of air, it moves from higher density to lower density. in this case, the change in density is the potential difference
So, since voltage is the difference between the charge available on the ends of a wire. Even if the wire splits in parallel circuit, the difference of the charges remains the same
<em>the more the potential difference, the faster electrons will move to the material with lower charge</em>
<u>Current:</u>
Current is the amount of electrons moving through a cross-section of a wire in a period of time
So basically, it is the amount of electrons that move across a given point on a wire in a period of time
If the wire splits, we will have the same amount of electrons moving through as they would if the wire was not split but now, the electrons passing are divided and hence, if we measure the current after the split, we will find that we have a lower current
that's because we have less charge moving through the cross-section of the wire since some of those electrons are moving through a different wire
That's why the current splits in a parallel circuit
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).