1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
3 years ago
11

I NEED HELP PLEASE I HAVE 10 MINS LEFT ON MY FINAL

Mathematics
2 answers:
vazorg [7]3 years ago
7 0
Give up bro u got the rest of the questions right
8090 [49]3 years ago
7 0

The area of the figure is = 7.6×6 = 45.6 cm²

You might be interested in
A backpacking tent in the shape of a triangular prism has sides that are 6 ft and a length of 7 ft. What is the volume of the te
Zanzabum
<span>the volume of the tent to the nearest whole number is 109.</span>
3 0
3 years ago
What is the answer to the question. Solve for x
slega [8]

Answer:

Answer:

x=\frac{75}2

Step-by-step explanation:

Give letters, as in the attached image.

The triangles ABE and CDE are similars (AAA). In particular AE:CE=BE:DE \rightarrow 46:30=(x+20):x \rightarrow 46x=30(x+20) \rightarrow 23x=15x+300 \rightarrow 8x=300\rightarrow  x=\frac{75}2

5 0
2 years ago
What is the general equation of a line?
zheka24 [161]
That sir would be I think its y=mx+b
7 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
9x (-2y + 5x) - 4 xy (6x-3y) please the person who answers will be marked as brainliest​. please show working​
Alenkasestr [34]

Answer:

See explanation

Step-by-step explanation:

9x(-2y+5x)-4xy(6x-3y)

By the distributive property this is equal to:

9x(-2y)+9x(5x)-4xy(6x)-4xy(-3y)=\\\\-18xy+45x^2-24x^2y+12xy^2

Hope this helps!

4 0
3 years ago
Other questions:
  • Find equations for the lines through the point (a,
    6·1 answer
  • Use transitive property to solve this variable
    6·1 answer
  • **WILL MARK BRAINLIEST** PLEASE ANSWER!! please ??
    13·1 answer
  • 9. Find m&lt;1.<br> 1<br><br> 32°<br><br> 120°<br><br> 80<br><br> 88<br><br> 60<br><br> 73
    10·1 answer
  • A philanthropic organisation sent free mailing labels and greeting cards to a random sample of 100 comma 000 potential donors on
    6·1 answer
  • If y=10 and x=2 what is the constant of variation (k)?<br>​
    13·2 answers
  • NY DMV Knowledge Test / Class D at Home
    13·1 answer
  • I need help asap!!!<br> Please and thank you
    6·1 answer
  • I don’t understand :(
    8·1 answer
  • What is the area of a 45 degree sector of a circle with a radius of 12 in.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!