The answer is the third one (C?) because if you started at 0, you are going below it since you are losing yards, causing you to have less and less yards. Adding two negatives gives you a lesser amount.
Answer:
![\large\boxed{1.\ f^{-1}(x)=\sqrt[12]{3^x}}\\\\\boxed{2.\ f^{-1}(x)=\sqrt[4]{3^x}}\\\\\ \boxed{3.\ f^{-1}(x)=\sqrt[3]{4^{7-x}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B12%5D%7B3%5Ex%7D%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B4%5D%7B3%5Ex%7D%7D%5C%5C%5C%5C%5C%20%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%5B3%5D%7B4%5E%7B7-x%7D%7D%7D)
Step-by-step explanation:

![2.\\y=\log_3x^4\\\\\text{Exchange x and y. Solve for y:}\\\\\log_3y^4=x\Rightarrow3^{\log_3y^4}=3^x\Rightarrow y^{4}=3^x\\\\y=\sqrt[4]{3^x}\\-------------------------](https://tex.z-dn.net/?f=2.%5C%5Cy%3D%5Clog_3x%5E4%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%5Clog_3y%5E4%3Dx%5CRightarrow3%5E%7B%5Clog_3y%5E4%7D%3D3%5Ex%5CRightarrow%20y%5E%7B4%7D%3D3%5Ex%5C%5C%5C%5Cy%3D%5Csqrt%5B4%5D%7B3%5Ex%7D%5C%5C-------------------------)
![3.\\y=-\log_4x^3+7\\\\\text{Exchange x and y. Solve for y:}\\\\-\log_4y^3+7=x\qquad\text{subtract 7 from both sides}\\\\-\log_4 y^3=x-7\qquad\text{change the signs}\\\\\log_4y^3=7-x\Rightarrow4^{\log_4y^3}=4^{7-x}\\\\y^3=4^{7-x}\Rightarrow y=\sqrt[3]{4^{7-x}}](https://tex.z-dn.net/?f=3.%5C%5Cy%3D-%5Clog_4x%5E3%2B7%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C-%5Clog_4y%5E3%2B7%3Dx%5Cqquad%5Ctext%7Bsubtract%207%20from%20both%20sides%7D%5C%5C%5C%5C-%5Clog_4%20y%5E3%3Dx-7%5Cqquad%5Ctext%7Bchange%20the%20signs%7D%5C%5C%5C%5C%5Clog_4y%5E3%3D7-x%5CRightarrow4%5E%7B%5Clog_4y%5E3%7D%3D4%5E%7B7-x%7D%5C%5C%5C%5Cy%5E3%3D4%5E%7B7-x%7D%5CRightarrow%20y%3D%5Csqrt%5B3%5D%7B4%5E%7B7-x%7D%7D)
Answer:
False
Step-by-step explanation:
It makes no sense......
The formula for the area of a square of side s is A = s^2.
Then s^2 = A, and s = +√A.
Here, the approx. side length is s = +√(75 m^2), or 8.7 m
Answer:
The inverse of function
is ![\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7%7D)
Option A is correct option.
Step-by-step explanation:
For the function
, Find 
For finding inverse of x,
First let:

Now replace x with y and y with x

Now, solve for y
Taking 5th square root on both sides
![\sqrt[5]{x}=\sqrt[5]{(y+7)^5}\\\sqrt[5]{x}=y+7\\=> y+7=\sqrt[5]{x}\\y=\sqrt[5]{x}-7](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3D%5Csqrt%5B5%5D%7B%28y%2B7%29%5E5%7D%5C%5C%5Csqrt%5B5%5D%7Bx%7D%3Dy%2B7%5C%5C%3D%3E%20y%2B7%3D%5Csqrt%5B5%5D%7Bx%7D%5C%5Cy%3D%5Csqrt%5B5%5D%7Bx%7D-7)
Now, replace y with 
![f^{-1} (x)=\sqrt[5]{x}+7](https://tex.z-dn.net/?f=f%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7)
So, the inverse of function
is ![\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7%7D)
Option A is correct option.